National technical assessment

NTĮ-01-061:2013

(original Lithuanian language version)

Trade name: Wooden frame external panels with insulation straw core

National technical evaluation owner: UAB Ecococon, Dievogalos g. 69 Dievogalos km. LT-53425, Kaunas district

Generic type and use of the construction product: Timber frame external insulation board with a thermal-insulation layer of straw

Manufacturing plant: UAB Ecococon, Dievogalos g. 69 Dievogalos village LT -53425, Kaunas district

Valid from: 26-08-2013
Valid till: 26-08-2018

This national technical approval contains: 28 pages including 3 Annexes
I LEGAL BASIS AND GENERAL CONDITIONS

1. This national technical approval was issued by the State Enterprise Construction Products Certification Centre (VĮ Statybos producejų sertifikavimo centras) in accordance with:
 1.1. The Law on Construction of the Republic of Lithuania;
 1.3. technical regulations on construction:
 1.3.1. STR 1.01.04:2013 “Assessment, verification and declaration of Construction products not harmonized technical specifications for the constancy of performance”. Testing laboratories and certification bodies allocation;
 1.3.2. STR 1.03.03:2013 “Appointment, publication (notification) of technical approval institutions, their performance and competence monitoring. National technical approvals”;
 1.3.3. STR 2.01.03:2009 “Design values of thermal technical values of construction materials and products”;
 1.3.4. STR 2.05.01:2005 “Thermal technique of buildings’ partitions”;
 1.3.5. STR 2.05.04:2003. “Stresses and loads”;
 1.3.6. STR 2.05.07:2005 “Design of wooden structures”;
 1.4. Requirements and provisions the technical specifications listed below were taken into consideration when preparing this national technical approval:
 1.4.2. Common Understanding of Assessment Procedure CUAP 12.01/02cl1 (edition June 2003, revision 1 June 2005, revision 2 October 2009) “Factory-made thermal insulation material and/or acoustic insulation material made of vegetable or animal fibres”.
2. State Enterprise Construction Product Certification Centre is authorized to check the compliance with the requirements of this national technical approval. Checking may take place in places of manufacture. UAB Ecococon is responsible for the building product conformity to the operational properties verified according to the requirements of this national technical approval.
3. This national technical approval may not apply to producers not indicated in the title page of this national technical approval, as well as to the manufacturing facilities not reported to the State enterprise Construction Product Certification Centre.
4. In accordance with the specified procedure, the State Enterprise Construction Product Certification Centre may repeal this national technical approval.
5. Only the full text of this national technical approval may be copied and distributed (including electronic dissemination). Reproduction and distribution of parts is allowed only with the consent of the State Enterprise Construction Product Certification Centre. In this case, the reproduced and distributed part must be clearly marked with the national technical approval number and the trade name of the product. Text and drawings presented in promotional publications must not contravene the guidelines for this national technical approval.
6. The original national technical approval is issued by the technical approval body in the Lithuanian language. Translations into other languages have to be designated as such.
II SPECIFIC CONDITIONS CONCERNING THE NATIONAL TECHNICAL APPROVAL

1. Definition of product and intended use

1.1. Product definition

The technical approval is intended for timber frame external panels with a thermal insulation layer of straw manufactured by UAB Ecococon.

The panel is made up of a supporting wooden frame filled with a pressed straw bale layer. The panels are manufactured in a factory without the inner and outer layers of finish. These layers are installed after installation on site. At the customer's request, the mixture of dry clay plaster for the interior wall surface decoration produced by the manufacturer may be supplied along with the panels.

Specification of materials and components used for the panel manufacturer is provided in Annex 1. The general view of the wooden frame of the panel is provided in Annex 2.

Panels are made separately for each individual building. In general, the wooden panel frame is designed so that only small incisions or shaping have to be made on-site, which does not affect the structural and mechanical durability of the entire enclosure design.

1.2. Intended uses

Panels are designed for the construction of exterior walls of residential and non-residential buildings.

A separate type of panel is a lintel which is used for the openings for doors and windows.

Panels are recommended for the construction of buildings in 0, I, II, III and IV category areas as defined by LST EN 1991-1-4. The use of panels must always be considered in each case individually depending on the marginal climatic conditions.

Application of panels depends on the construction technical regulations and other legal acts, and in individual cases on specific customer requirements, specific climatic conditions, and should be described in the design documentation in each case.

The base and load-bearing element of the walls is the timber frame, which, according to the required building mechanical strength and durability, in each particular case, may be enhanced by additional bearing elements (e.g., columns, beams, girders, etc.).

Provisions of this technical approval are determined from the condition that the economically reasonable useful life of these panels is 50 years for load-bearing structures, inaccessible components and materials, and 25 years for replaceable and interchangeable components and materials provided that the building will be operated and maintained properly, and will be heated during the winter season.

2. References

Dated and undated reference provisions from other publications are included in this technical approval. These normative references are written in the appropriate places in the text and the list of publications is given in this section.

In case of dated references, all subsequent amendments or corrections of these publications apply to this technical approval only when they are included in it as amendments or corrections. In case of undated references, the latest edition applies (including any amendments).

LST 1413.5 “Building mortar. Test methods. Density determination method”;
LST 1413.6 “Building mortar. Test methods. Determination of compressive strength of mortar”;
LST 1413.9 “Building mortar. Test methods. Determination of mortar contraction – expansion deformation”;

3
LST EN 335-3 “Durability of wood and wood-based products. Definition of hazard classes of biological attack. Part 3. Application to wood-based panels”;
LST EN 336 “Structural timber. Sizes, permissible deviations”;
LST EN 338 “Structural timber. Strength classes”;
LST EN 594 “Timber structures. Test methods. Soft body impact test of timber framed walls”;
LST EN 12086 “Building thermal-insulating products. Determination of water vapour permeability properties”;
LST EN 12152 “Curtain walling. Air permeability. Performance requirements and classification”;
LST EN 12153 “Curtain walling. Air permeability. Test method”;
LST EN 12154 “Curtain walling. Imperviousness to water. Performance requirements and classification”;

LST EN 594 “Timber structures. Test methods. Racking strength and stiffness of timber frame wall panels”;
LST EN 1602 “Building thermal-insulating products. Determination of apparent density”;
LST EN 12086 “Building thermal-insulating products. Determination of water vapour permeability properties”;
LST EN 12152 “Curtain walling. Air permeability. Performance requirements and classification”;
LST EN 12153 “Curtain walling. Air permeability. Test method”;
LST EN 12154 “Curtain walling. Imperviousness to water. Performance requirements and classification”;

LST EN 594 “Timber structures. Test methods. Soft body impact test of timber framed walls”;
LST EN 12086 “Building thermal-insulating products. Determination of water vapour permeability properties”;
LST EN 12152 “Curtain walling. Air permeability. Performance requirements and classification”;
LST EN 12153 “Curtain walling. Air permeability. Test method”;
LST EN 12154 “Curtain walling. Imperviousness to water. Performance requirements and classification”;
LST EN 12155 “Curtain walling. Leakproofness. Laboratory test under static pressure”;
LST EN 12667 “Thermal performance of building materials and products. Determination of thermal resistance by means of guarded hot plate and heat flow meter methods. Products of high and medium thermal resistance”;
LST EN 12865 “Hygrothermal performance of building components and building elements. Determination of the resistance of external wall systems to driving rain under pulsating air pressure”;
LST EN 13183-2 “Moisture content of a piece of sawn timber. Part 1. Determination by oven dry method”;
LST EN 13497 “Building thermal-insulating products. Determination of the resistance to impact of external thermal insulation composite systems (ETICS)”;
LST EN 13501-1 “Fire classification of construction products and building elements. Part 1. Classification using data from external fire exposure to roofs tests”;
LST EN 13501-2 “Fire classification of construction products and building elements. Part 2. Classification using data from fire resistance tests, excluding ventilation services”;
LST EN 13823 “Reaction to fire tests for building products. Building products excluding floorings exposed to the thermal attack by a single burning item”;
LST EN 13986 “Wood-based panels for use in construction. Characteristics, evaluation of conformity and marking”;
LST EN 15048-1 “Non-preloaded structural bolting assemblies. Part 1. General requirements”;
LST EN ISO 846 “Plastics. Evaluation of the action of microorganisms”;
LST EN ISO 6946 “Building components and building elements. Thermal resistance and thermal transmittance. Calculation method”;
LST EN ISO 8990 “Thermal insulation. Determination of steady-state thermal transmission properties. Calibrated and guarded hot box”;
LST EN ISO 10140-4 “Acoustics. Laboratory measurement of sound insulation of building elements. Part 4. Requirements for measurement procedures”;
LST EN ISO 10456 “Building materials and products. Hygrothermal properties. Tabulated design values and procedures for determining declared and design thermal values”;

5
LST EN ISO 13788 “Hygrothermal performance of building components and building elements. Internal surface temperature to avoid critical surface humidity and interstitial condensation. Calculation methods”;
ONORM B 6010 “Materials for thermal and/or acoustic insulation in building construction. Test methods”.

3. Terms and definitions
Terms and definitions used in this technical evaluation:
3.1. wooden external frame panel with thermal insulation straw layer – a panel with the timber frame as the main load-bearing element, filled with a compressed straw layer.

4. Symbols and Abbreviations
Markings used in this technical approval:
- \(d_N \) – nominal product thickness. mm;
- \(\lambda_D \) – declared value of thermal transmittance coefficient, \(\text{W/(m\cdot K)} \);
- \(\lambda_{90/90} \) – 90% quintile of the limit level of the thermal conductivity coefficient at the confidence level 90%, \(\text{W/(m\cdot K)} \);
- \(\lambda_{ds} \) – design value of thermal transmittance coefficient, \(\text{W/(m\cdot K)} \);
- \(R_D \) – the cleared thermal resistance of the thermal insulation layer, \(\text{(m}^2\text{\cdot K)/W} \);
- \(R_{90/90} \) – 90% quintile of the thermal resistance threshold at the confidence level 90%, \(\text{(m}^2\text{\cdot K)/W} \);
- \(R_{pl} \) – panel thermal resistance, \(\text{(m}^2\text{\cdot K)/W} \);
- \(U_{pl} \) – heat transfer coefficient value of the panel, \(\text{W/(m}^2\text{\cdot K)} \);
- \(\rho \) – density, kg/m\(^3\).

The following abbreviations used in this technical approval:
- NTĮ – national technical approval;
- PTB – initial type testing.

5. Essential performance characteristics of the product and methods of their verification
This national technical approval sets out the requirements and test methods for the essential performance characteristics of products that are necessary to confirm their suitability for use.

5.1. Mechanical resistance and stability
Calculations of mechanical strength of the wall panel were performed according to the requirements of LST EN 1990. LST EN 1991-1-1, LST EN 1995-1-1 and the ETAG 007 guidelines.
The estimated mechanical strength characteristics are given in Annex 1.
Partitioning of the described wall panels can be installed on all types of foundations: for example, concrete slab on the soil, strip concrete or masonry foundation, concrete basement walls. This technical approval does not include the foundation design, which must be designed based on individual requirements.

5.2. Safety in case of fire
5.2.1. Combustibility
Flammability classification of the wall panel and its individual components LST EN 13501-1 are presented in Annex 1.

5.2.2. Fire resistance
The property not determined.
If necessary, the panel fire resistance can be determined in accordance with the requirements of LST EN 13501-2.

5.3. **Hygiene, health, and environment protection**

5.3.1. Water vapour permeability, and resistance to moisture effects
Having performed calculations in accordance with LST EN ISO 13788, STR 2.05.01:2005 under normal climatic conditions, the panels were rated as ensuring sufficient support of moisture depending on the scope of application specified in section 1.2, provided that the building is heated during the winter season.

5.3.2. Water impermeability
The panel structure and its interconnection units and connection units with other structures ensure their tightness to rain and snow.
In order to protect the panel structure from moisture penetration through the foundation, the waterproof layer must be equipped between the panel and the foundation.
The use of these panels in higher humidity areas such as bathrooms, are possible by equipping the additional layer impervious to water and water vapour on the inner surface of the panel, to ensure the moisture resistance of the structure. This technical approval does not include the panels of his design.

5.3.3. Dangerous substances
According to the manufacturer’s declaration, the wall panels do not contain any harmful and hazardous materials, other than:
- potential presence of formaldehyde in wood fibre panels and plywood;
- potential presence of pesticides and fungicides in the thermal insulating straw layer.
Formaldehyde emission class E1 according to LST EN 13986.
Straw used in the manufacture of panels may be processed during growth. In this case, the manufacturer must declare:
- the name of the pesticide (s), name and concentration of the active ingredient;
- processing stage and the amount applied.
The manufacturer must ensure that the products used in the processing of straw during growth meet the requirements of Directive 98/8/EC for biocidal products.

5.4. **Safety in use**

5.4.1. Impact resistance
The impact resistance of the outer surface of the panel is ensured by the materials used, and is determined and declared in accordance with the corresponding technical specification.
The surface impact resistance of the internal plastered clay panel is a validated by performing the impact resistance test to a solid body according to LST EN 13497 or ISO 7892 under the following test conditions:
- 2 J, 500 g, 408 mm;
- 10 J, 1000 g, 1020 mm.
Resistance to impact is considered to be satisfactory if no mechanical damage (cracks, detached layers) is visible with any I after the test.

5.5. **Protection against noise**

5.5.1. Airborne sound insulation
5.6. Energy economy and heat retention

5.6.1. Thermal resistance

Wall panel thermal resistance R_{pl} and its corresponding heat transfer coefficient U_{pl} are set to meet LST EN ISO 6946 and STR 2.01.03:2009.

The thermal properties of the corresponding materials are taken from LST EN ISO 10456, from the manufacturers’ declarations of conformity or from direct test results.

Values of thermal properties, thermal conductivity and heat transfer coefficients are given in Annex 1.

5.6.2. Air permeability

The analysis of the panel design and its interconnection units and connection points with other structures showed that the panels are sufficiently impermeable to air according to the intended use, provided they are properly interconnected to each other and to the adjacent structures.

5.7. Durability

5.7.1. Durability

The rules for the design of timber frame building ensure that the wear of materials and components within the economically reasonable service life will be negligible and will not affect the essential performance characteristics if the building is used for the intended purpose indicated in section 1.2.

5.7.2. Wood product resistance to biological effects

Depending on the durability class and the use of wood components, wood components can be treated for wood beetles, insects, fungi, and the blue mould.

This technical approval does not include exterior decoration of the panels. These products must meet the durability requirements of corresponding technical specifications.

5.7.3. Corrosion resistance of metal fasteners

Metal fasteners and structural connections (bolts, screws, etc.) must be corrosion resistant or protected against corrosion in accordance with the requirements of LST EN 01-01-1995.

5.7.4. Thermal insulating straw layer resistance to biological effects

Straw layer durability was rated according to its resistance to mould fungi under increased humidity conditions. The test was conducted in accordance with the requirements of ONORM B 6010, evaluating the fungi mould overgrowth of samples according to the methods of LST EN ISO 846.

Description of the test procedure and result of approval are presented in Annex 1.

5.8. Geometric shape and dimensional accuracy

Requirements for the geometric dimensions and shape accuracy of the products are presented in Table 5.8.1.

5.8.1. Requirements for geometric dimensions and shape accuracy of panels

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Permitted tolerance</th>
<th>Test method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>± 2 mm</td>
<td>Measurement accuracy – 1 mm. Measured in three places on both sides of the panel – at the panel edges and in the middle. Assessment – by the arithmetic mean of all measurements.</td>
</tr>
<tr>
<td>Width</td>
<td>± 2 mm</td>
<td>Measurement accuracy – 1 mm. Measured in three places on both sides of the panel – on top, bottom and middle of the panel. Assessment – by the arithmetic mean of all measurements.</td>
</tr>
<tr>
<td>Thickness</td>
<td>± 2 mm</td>
<td>Measurement accuracy – 1 mm. Measured in three places on both sides of the panel – on top.</td>
</tr>
</tbody>
</table>
5.9. Requirements for materials

5.9.1. Timber

C24 and higher strength class timber is used for the manufacture of panels in accordance with LST EN 338.

Wood moisture content ≤ 20%.

The timber must be suitable for use for the performance class 2 under LST EN 01-01-1995.

Requirements for geometric dimensions and shape of the wood beam are given in Table 5.9.1.1.

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Permitted tolerances</th>
<th>Method of measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-sectional dimensions</td>
<td>Class 2 according to LST EN 336</td>
<td>LST EN 1309-1</td>
</tr>
<tr>
<td>Shape accuracy:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- spring*</td>
<td>≤ 4 mm in 2 m length</td>
<td></td>
</tr>
<tr>
<td>- bow**</td>
<td>≤ 6 mm in 2 m length</td>
<td></td>
</tr>
<tr>
<td>- twist***</td>
<td>≤ 6 mm in 25 mm width and in 2 m length;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 2 mm 100 mm of the side</td>
<td></td>
</tr>
</tbody>
</table>

* – spring – longitudinal shift of the lumber workpiece, perpendicular to the edge;

** – bow – lengthwise shift of the lumber workpiece perpendicular to the sides;

*** – twist – helical lengthwise twisting of the lumber workpiece sides;

**** – cup – curvature of the lumber workpiece perpendicular to the width of the side.

5.9.2. Straw

Straw requirements are given in Table 5.9.2.1.

5.9.2.1. Straw requirements

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Requirement</th>
<th>Method of measurement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humidity</td>
<td>≤ 20%</td>
<td>Manufacturer's method</td>
</tr>
<tr>
<td>Biocide (pesticide) quantity</td>
<td>Must meet the requirements of Directive 98/8/EC for biocidal products</td>
<td>straw supplier's declaration</td>
</tr>
<tr>
<td>Straw structure</td>
<td>Technical specification of the manufacturer</td>
<td>visual inspection</td>
</tr>
</tbody>
</table>

5.9.3. Fibreboard

Essential wood fibre board characteristics are specified in Table 5.9.3.1.

5.9.3.1. Essential wood fibre board characteristics
5.9.4. Plywood

Essential requirements for plywood are specified in Table 5.9.4.1.

5.9.4.1. Essential requirements for plywood

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
<th>Method of measurement/assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formaldehyde emission class</td>
<td>E1</td>
<td>LST EN 717-1 LST EN 717-2</td>
</tr>
<tr>
<td>Performance class</td>
<td>2</td>
<td>LST EN 01-01-1995</td>
</tr>
<tr>
<td>Resistance class to biological organisms</td>
<td>2</td>
<td>LST EN 335-3</td>
</tr>
</tbody>
</table>

5.9.5. Fasteners

Fasteners must be the resistant to corrosion or be protected from it. The minimum corrosion protection requirements under LST EN 1995-1-1-1:2005+AC:2006 are given in Table 4.1. Attachment elements must be easily replaceable.

If the controlled strength (selected from the condition of strength) bolts to be used for the panel connection, their class according to LST EN ISO 898-1 must not be less than 4.6. In this case, screw sets must be chosen according to the requirements of LST EN 15048-1.

5.9.6. Clay plaster

Essential characteristics of clay plaster used and included in the delivery are specified in Table 5.9.6.1.

5.9.6.1. Essential characteristics of clay plaster included in the delivery

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
<th>Method of measurement/assessment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density</td>
<td>1600±1800 kg/m³</td>
<td>LST 1413.5</td>
</tr>
<tr>
<td>Plaster adhesion to the straw insulation layer:</td>
<td>40 kPa</td>
<td>ETAG 004 5.1.4.1.1</td>
</tr>
<tr>
<td>- bond strength</td>
<td>in the straw layer</td>
<td></td>
</tr>
</tbody>
</table>
Shrinkage deformations
Compressions strength
Design value of thermal transmittance coefficient \(\lambda_{ds} \)
Water vapour diffusion resistance factor \(\mu \)

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shrinkage deformations</td>
<td>1.5 mm/m</td>
<td>LST 1413.9</td>
</tr>
<tr>
<td>Compressions strength</td>
<td>1.7 MPa</td>
<td>LST 1413.6</td>
</tr>
<tr>
<td>Design value of thermal transmittance coefficient (\lambda_{ds})</td>
<td>0.521 W/(m-K)</td>
<td>LST EN 12667</td>
</tr>
<tr>
<td>Water vapour diffusion resistance factor (\mu)</td>
<td>8.2÷9.9</td>
<td>LST EN 12086</td>
</tr>
</tbody>
</table>

6. Evaluation of the constancy of performance, testing and marking

6.1. System of the evaluation of the constancy of performance, testing and marking

The evaluation and approval system of the constancy of performance of panels is presented in Table 6.1.1. The manufacturer must demonstrate the compliance of its product with the following national technical approval requirements:
- by initial type testing;
- production control.

6.1.1. System of evaluation and approval of the constancy of performance, testing and marking

<table>
<thead>
<tr>
<th>Product(s)</th>
<th>Intended use</th>
<th>Evaluation and approval scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timber frame external panels with thermal insulation layer of straw</td>
<td>For exterior petitioning of residential and non-residential buildings, as provided in section 1.2</td>
<td>2+(^{a})</td>
</tr>
</tbody>
</table>

\(^{a}\) (see European Parliament and Council Regulation (EC) 305/2011V, Annex (1.3)

Scope of the constancy evaluation process of performance and distribution of tasks is specified in Table 6.1.2.

6.1.2. Scope of the constancy evaluation of performance and distribution of tasks

<table>
<thead>
<tr>
<th>Tasks</th>
<th>Scope of the task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tasks of the manufacturer</td>
<td>see 6.2.1.1</td>
</tr>
<tr>
<td>- initial type testing</td>
<td>see 6.2.1.1</td>
</tr>
<tr>
<td>- production control (PC)</td>
<td>see 6.2.1.2</td>
</tr>
<tr>
<td>- testing of samples taken from the manufacturer according to the Control plan (Annex No 4)</td>
<td>see Control plan (Annex No 4)</td>
</tr>
<tr>
<td>Tasks for the technical approval body</td>
<td>see 6.2.2.1:</td>
</tr>
<tr>
<td>- initial type testing</td>
<td>- mechanical durability and stability (p. 5.1);</td>
</tr>
<tr>
<td>- class of reaction-to-fire performance (p. 5.2.1);</td>
<td>- fire resistance (p. 5.2.2);</td>
</tr>
<tr>
<td>- thermal characteristics (p. 5.6.1);</td>
<td>- durability (p. 5.7.4)</td>
</tr>
<tr>
<td>Tasks for certification body</td>
<td>see 6.2.2.2</td>
</tr>
<tr>
<td>- manufacturing control system certification:</td>
<td>see 6.2.2.3</td>
</tr>
<tr>
<td>- initial production and production control system approval;</td>
<td></td>
</tr>
<tr>
<td>- ongoing production control system supervision and approval</td>
<td></td>
</tr>
</tbody>
</table>
6.2. Responsibilities

6.2.1. Tasks of the manufacturer

6.2.1.1. Initial type testing

Results of tests and approvals carried out for this type of technical evaluation are used as the initial type testing. In case of changes in the manufacturing process, components and manufacturing control system which may affect the declared essential performance characteristics, the initial type testing must be repeated.

Initial type testing performed by manufacturer is specified in Table 6.2.1.1. Other initial type testing may be carried out only by the technical approval institution – State Enterprise Construction Product Certification Centre.

6.2.1.1. Scope of the initial type testing performed by the manufacturer

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Test/assessment method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water vapour permeability, and resistance to moisture effects (p. 5.3.1)</td>
<td>Calculation according to LST EN ISO 13788, STR 2.05.01</td>
</tr>
<tr>
<td>Water impermeability</td>
<td>Evaluation according to the provided element and component drawings in accordance with known engineering practice. Test acc. to the methods of LST EN 12155, LST EN 12154, LST EN 1027, LST EN 12865.</td>
</tr>
<tr>
<td>Dangerous substances (p. 5.3.3)</td>
<td>The declaration according to the supplier compliance documents</td>
</tr>
<tr>
<td>Impact resistance (p. 5.4.1)</td>
<td>LST EN 13497 or ISO 7892 under the conditions:</td>
</tr>
<tr>
<td></td>
<td>- 2 J, 500 g, 408 mm;</td>
</tr>
<tr>
<td></td>
<td>- 10 J, 1000 g, 1020 mm.</td>
</tr>
<tr>
<td>Airborne sound insulation indicator (p. 5.5.1)</td>
<td>LST EN ISO 10140-1, LST EN ISO 10140-2, LST EN ISO 10140-4, LST EN ISO 10140-5, LST EN ISO 717-1</td>
</tr>
<tr>
<td>Air permeability (p. 5.6.2)</td>
<td>Evaluation according to the provided element and component drawings in accordance with known engineering practice. Testing in accordance with the methods of LST EN 12153, LST EN 12152.</td>
</tr>
</tbody>
</table>

Initial type testing results must be recorded, submitted for inspection and stored for at least 10 years after the date of the last manufactured batch for which it was intended.

Tests must be carried out using testing methods described in this technical approval.

6.2.1.2. Production control (PC)

The internal production control system must be established, validated and documented. The internal production control system must cover the manufacturing process and production control activities to ensure that products placed on the market complies with the requirements of this technical approval and declarative values. These internal controls must include:

- incoming materials control in accordance with the Control plan (see Annex 4), with the determination of their admission criteria for quick evaluation whether the materials are appropriate. This control must also ensure that the panel components not manufactured by the NTE owner are in accordance with this technical approval requirements;
- control of manufacturing processes in accordance with the Control plan, identifying the controlled parameters and their acceptance criteria. Processing and measuring equipment suitability...
must be ensured. Actions must be in place to ensure that the tested characteristics or criteria do not meet those specified;

- finished product testing in accordance with the Control plan, by determining the sampling method of the finished product and the test frequency, ensuring the conformity of production, according to the criteria and declarative values of this NTE. Suitability of test equipment must be ensured;

- finished product storage management and control to ensure that nonconforming products are clearly identified. The recall procedure of nonconforming products must be documented.

All manufacturer’s installed elements, requirements and means must be formalized in writing in the procedures and policies.

The manufacturer's control results are recorded and evaluated. The records must include at least the following information:
- test subject identification;
- date of test/control;
- test and control results and, if appropriate, comparison with requirements;
- signature of the responsible person.

The records must be presented to the inspection body during the continuous surveillance. They must be delivered to the Construction Product Certification and Testing Centre upon request.

6.2.2. Tasks for the bodies carrying out third party assignments in the assessment and verification of the constancy of performance of the construction product

6.2.2.1. Initial type testing

Results of tests and assessments carried out for this type of technical evaluation are used as the initial type testing. In case of changes in the manufacturing process, components and manufacturing control system which may affect the declared essential performance characteristics, the initial type testing must be repeated.

Scope of the initial type testing performed by the state enterprise Construction Products Certification Centre is specified in Table 6.2.2.1. Other initial type testing may be performed by the manufacturer.

6.2.2.1. Scope of the initial type testing performed by the technical approval body

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Test/assessment method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical durability and stability (p. 5.1)</td>
<td>Calculation according to requirements LST EN 1990. LST EN 1991-1-1, LST EN 1995-1-1 and ETAG 007. Tests according to LST EN 380. LST EN 594, LST EN 595, LST EN 596.</td>
</tr>
<tr>
<td>Class of reaction-to-fire performance (p. 5.2.1)</td>
<td>LST EN 13501-1</td>
</tr>
<tr>
<td>Fire resistance (p. 5.2.2)</td>
<td>LST EN 13501-2</td>
</tr>
<tr>
<td>Thermal characteristics (p. 5.6.1): - of the straw layer λ_D; - thermal resistance of panel R_{pl}</td>
<td>Tests according to LST EN 12667, according to LST EN 12939. Calculations according to LST EN ISO 6946 and STR 2.01.03.</td>
</tr>
<tr>
<td>Durability (straw layer resistance to biological effects)</td>
<td>Tests according to ONORM B 6010. Evaluation according to the methods LST EN ISO 846.</td>
</tr>
</tbody>
</table>

6.2.2.2. Initial factory and production control
Based on this technical approval and the Control plan, the certification body must make sure that the factory (personnel and equipment) and the factory internal production control are adequate to ensure they continuous manufacture of production in accordance with the requirements of this NTE.

The initial approval must evaluate the scope and the result of the original type testing.

6.2.2.3. Continuous supervision, manufacturing control assessment and approval

The frequency of audits performed by the certification body in the factory should be at least once a year.

These audits should include checking for the compliance of the internal factory production control and the specified manufacturing process with the Control plan requirements.

Ongoing monitoring and evaluation of the internal factory production control must be conducted in accordance with the Control plan.

During each audit the certification body must verify:
- incoming material control records;
- manufacturing process control records in the course of production;
- finished production control records;
- technological equipment control records;
- control and calibration records of testing equipment and measurement.

In cases where the provisions of the technical approval and the Control plan are no longer complied with, the production control certificate must be suspended.

6.2.2.4. Production control certificate and declaration of performance characteristics

Once the conditions specified in this technical approval are met, the certification body must issue a certificate of conformity of production control. The certificate must contain the following information:
- name and address of the certification body;
- manufacturer's name, address, place of manufacture;
- general product description (type, corresponding identification details, use);
- provisions met by the product (marking of this technical approval);
- certificate number;
- validity of the certificate and conditions, if any;
- full name and position title of the person authorised to sign the certificate.

The manufacturer must draw up a declaration of performance characteristics (see STR 1.01.04:2013, Annex I), which must include:
- manufacturer's name, address, place of manufacture;
- product description (type, identification details, use);
- essential performance characteristics in accordance with p. 5.1, 5.2.1, 5.2.2 (if declared), 5.3.3, 5.5.1 (if declared), 5.6.1;
- provisions to which the product complies (marking of this technical approval) and a preference to the reports of initial type testing and assessment, production control certificate;
- name and address of the certification body;
- special conditions for the product use;
- full name and position title of the person authorised to sign the manufacturer's declaration.

In addition, if necessary, legislation relating to dangerous substances, which should be fulfilled by a product and all information necessary according to this legislation, must be indicated in an appropriate manner.

6.3. Marking and labelling
6.3.1. Marking

6.1.1. The nominal marking must include:
- wall element name (panel, lintel or sill);
- panel type;
- measurements (height, width, thickness), cm.

6.3.2. Labelling

Every product has to be labelled. The labelling must be durable.

The product must contain the following information:
- manufacturer's name or trademark and address;
- product labelling (p. 6.3.1);
- production date;
- marking of this technical approval.

Information on all essential performance characteristics indicated in this technical evaluation must be indicated in the declaration of performance.

Figure 1 provides the example of the labelling information to be used on the product.

<table>
<thead>
<tr>
<th>Manufacturer’s name, address</th>
<th>National Technical Evaluation Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAB Ecococon, Dievogalos g. 69 Dievogala village. Kaunas district;</td>
<td>NTĮ-01-0XX:2013</td>
</tr>
<tr>
<td>NTĮ-01-0XX:2013</td>
<td></td>
</tr>
<tr>
<td>Wall panel T1 – 300.120.40</td>
<td></td>
</tr>
<tr>
<td>SP/8</td>
<td></td>
</tr>
<tr>
<td>Date of manufacture: 03-05-2013</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1. Output labelling sample to be used on the product

Figure 2 provides an example of the labelling information to be used for packaging, and in documentation.

<table>
<thead>
<tr>
<th>Manufacturer’s name, address</th>
<th>National technical evaluation marking</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAB Ecococon, Dievogalos g. 69 Dievogala village. Kaunas district;</td>
<td></td>
</tr>
<tr>
<td>NTĮ-01-0XX:2013</td>
<td></td>
</tr>
<tr>
<td>Wall panel T1 – 300.120.40</td>
<td></td>
</tr>
</tbody>
</table>

Performance characteristics:
Load-bearing capacity:
- affected vertically by the load of medium duration 36.9 kN/m
- affected vertically by the load of short-term duration 41.45 kN/m
- affected vertically by the load of short-term duration with the horizontal load:
 - 1.8 kN/m² 29.5 kN/m
 - 2.1 kN/m² 25.8 kN/m
 - 2.4 kN/m² 22.2 kN/m
- affected by horizontal instantaneous load
- affected by shearing short-term and instantaneous loads

Class of reaction-to-fire performance: B-s1,d0
Thermal resistance R_D 8.1 (m²·K)/W
Airborne sound insulation indicator R_W ($C;C_{tr};C_{100-5000}$) 54 (-1;-3:0) dB
Dangerous substances See the Annex

Fig. 2. Example of the presentation of information to be used for packaging, documentation

7. Assumptions for the assessment of the fitness of the construction product for the intended performance characteristics

7.1. Manufacturing
The production process is carried out in dry, heated industrial premises. All necessary materials and components are stored indoors ensuring favourable conditions for the quality of these materials and components.

The products are manufactured in accordance with the provisions of this national technical evaluation, using the method of production which has been identified during the manufacturing audit, and as specified in the technical documentation.

This national technical approval is issued on the basis of the data provided by the manufacturer for the product identification, evaluation and validation which are stored in the state enterprise Construction Product Certification Centre. Changes that may have an impact on the output characteristics of the production process must be notified before the Construction Product Testing Centre before these changes are implemented. The Construction Product Testing Centre shall decide whether these changes have an impact on the validity of the national technical approval and whether it will require additional evaluation and/or the NTE replacement.

Product suitability for use according to the purpose indicated in this technical approval has been approved after the assessment of:
- mechanical durability and stability of the product design during transportation, installation and operation;
- product safety requirements;
- essential performance characteristics of products;
- production control system used by the manufacturer to ensure the performance stability.

7.2. Design and legal regulation
The products are manufactured according to the design of the individual building, where they will be used. The design must take into account the following:
- requirements for load bearing capacity;
- fire protection garments;
- special requirements for health and the environment;
- safety of use;
- protection from noise,
- energy savings.

7.3. requirements for the base
This national technical approval is not intended for building foundations.
The foundations must be individually designed according to the national technical specifications in force on the construction site.
Before beginning the installation of products, the installer must check the products and assess the existing base according to the tolerances indicated below (this is necessary for the correct mounting of the panels):
- length, width: ± 0.01 m;
- perpendicularity: ± 0.01 m;
- planes: surface smoothness ± 0.01 m;
- edge straightness: ± 5 mm.
Waterproof membrane must be installed between the base and the product according to the working drawings.

7.4. Installation
Products must be installed in accordance to the installation manual provided by the manufacturer.
Installation instructions must contain the following:
- method of installation and necessary means;
- temporary fastening of products during installation;
- final product attachment to the base;
- description of all materials and components;
- standard and special connector and an assembly drawings.

8. Instructions for the manufacturer
8.1. Packaging, transport and storage
The manufacturer must draw up the transport and storage instructions for the product.
The products must be protected from harmful effects of atmosphere during transport, storage and installation.
Products and their components must not be subject to and stored in a manner that might damage them, for example, due to local stress or own weight, or due to excessive bending deformation.

8.2. Use, maintenance, repair
The manufacturer is responsible for ensuring the proper information about the use of the products with each shipment, including general information and specific installation drawings and structural details.
Prior to the installation it must be ascertained that the products and components are not damaged during transportation and storage. Damaged items and components need to be replaced.
Where it is necessary to replace or repair the structure, it can be done only in accordance with the installation instructions. In other cases, changes may be made only with a written consent of the manufacturer.
In order to preserve the properties of products and ensure the stability of these properties through the reasonable time of use, they may require regular maintenance. In such case, the maintenance actions and frequency must be specified in the manufacturer's maintenance instructions.
Overall appearance of panels, their configuration, basic geometry, and main performance characteristics

This annex contains information on the product configuration, components, basic dimensions and essential performance.

The panels are manufactured in the factory without the inner and outer layers of finish. A mixture of clay plaster may be supplied for the inner layer together with the product. The inner layer of clay plaster is installed after the installation of the panels and protecting the internal structures of the building against precipitation.

Standard panel dimensions: height – 3000 mm, width – 1200 mm. If necessary, smaller dimension panels can be manufactured.

Depending on the panel timber frame structure, UAB Ecococon company produces two types of panels:
- Type T1 – no struts (see Fig. P.2.1);
- Type T2 – with struts (see Fig. P.2.2).

P.1.1. Panel description
Marking	Description of the constituent
A | External finishing layer. Used according to customer's request. This technical approval does not include this layer and does not provide its requirements.
B | Fibreboard, density 270 kg/m³, thickness 60 mm, flammability class E, λ₀ = 0.048 W/(m·K). For other properties, see in Table 5.9.3.1
C | Thermal insulating layer of compressed straw, density 98–127 kg/m³, humidity 12%, thickness 400 mm, λ₀ = 0.060 W/(m·K)
D | Internal clay plaster layer: clay plaster “brown clay”, thickness 30 mm, density 1600–1800 kg/m³, quantity 48 kg/m², reinforced with hay fibre
E | Timber frame: - vertical C24 strength class timber beams, 95×45 mm;
- struts from the C24 strength class of timber beams, 95×45 mm

Fasteners:

<table>
<thead>
<tr>
<th>Connecting elements</th>
<th>Fastener type</th>
<th>Essential requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Timber frame load-bearing elements</td>
<td>Paneltwistec screws according to ETA-11/0024</td>
<td>Diameter: Ø4 mm, Ø6 mm; Ø8 mm. Steel limit strength: ≥ 600 N/mm²</td>
</tr>
</tbody>
</table>

P.1.2. Mechanical resistance and stability

Wall bearing capacity calculations were performed according to the requirements of LST EN 1990, LST EN 1991-1-1, LST EN 1995-1-1 and ETAG 007 guidelines. The calculations were carried out according to the ultimate safety state by applying the partial factor method.

Assumed in calculations:
- timber strength class C24 (characteristic timber density ρₚ = 350 kg/m³);
- timber frame elements are connected with the screws Paneltwistec (Ø4 mm; Ø6 mm, Ø8 mm, ETA-11/0024, steel strength limit Rₘ = 600 N/mm²);
- effects of timber fibreboard used for wall panelling is not evaluated.

Calculations were made using the operating conditions class 2 according to LST EN 01-01-1995.

In case of different classes of the timber strength and operating conditions, and other types of joints, the load-bearing values indicated in the table is should be adjusted accordingly.

P.1.2.1. Design vertical bearing power under the medium and short-term load

The load of roofing and floor elements asked be transferred to the walls through additional elements (beams, joists). The bearing capacity of those elements must be verified in separate calculations.

The design vertical load-bearing capacity of external timber frame walls under the medium and short-term loads is presented in Table P.1.2.1.

P.1.2.1. Design vertical load-bearing capacity (kN/m) under medium and short-term loads

<table>
<thead>
<tr>
<th>Design scheme of the panel</th>
<th>Design vertical load-bearing capacity (kN/m), when the load duration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>average</td>
</tr>
<tr>
<td>Without struts (Annex 2, Fig. P.2.1)</td>
<td>36.9</td>
</tr>
<tr>
<td>With struts (Annex 2, Fig. P.2.2)</td>
<td>56.2</td>
</tr>
</tbody>
</table>
P.1.2.2. Design vertical load-bearing capacity under short-term load acting along with the horizontal load (perpendicular to the plane of the wall)

Horizontal loads are approximately taken according to the possible maximum wind load pressures in Lithuania areas.

The design vertical load-bearing capacity of external timber frame walls acting along with the horizontal load (perpendicular to the plane of the wall) is presented in Table P.1.2.2.

<table>
<thead>
<tr>
<th>Design scheme of the panel</th>
<th>The design vertical load-bearing capacity (kN/m), the horizontal load q (kN/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.8</td>
</tr>
<tr>
<td>Without struts (Annex 2, Fig. P.2.1)</td>
<td>29.5</td>
</tr>
<tr>
<td>With struts (Annex 2, Fig. P.2.2)</td>
<td>18.8</td>
</tr>
</tbody>
</table>

P.1.2.3. Design horizontal (perpendicular to the plane of the wall) carrying power in the instantaneous load time

Wall batten exterior load-bearing capacity must be verified in separate calculations.

External timber frame walls The design horizontal (perpendicular to the plane of the wall) carrying power in the instantaneous load time is presented in Table P.1.2.3.

<table>
<thead>
<tr>
<th>Design scheme of the panel</th>
<th>q_H.d (kN/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Without struts (Annex 2, Fig. P.2.1)</td>
<td>5.05</td>
</tr>
<tr>
<td>With struts (Annex 2, Fig. P.2.2)</td>
<td>2.4</td>
</tr>
</tbody>
</table>

P.1.2.4. Design shear load-bearing capacity (in the wall plane) under short-term and instantaneous load

The shear load-bearing capacity calculations assume that the frame wall is anchored to the base.

The design shear load-bearing capacity (in the wall plane) of external framed walls under short-term and instantaneous load is presented in Table P.1.2.4.

<table>
<thead>
<tr>
<th>Design scheme of the panel</th>
<th>Design shear load-bearing capacity (kN/m), when the load duration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>short-term</td>
</tr>
<tr>
<td>Without struts (Annex 2, Fig. P.2.1)</td>
<td>0</td>
</tr>
<tr>
<td>With struts (Annex 2, Fig. P.2.2)</td>
<td>2.56</td>
</tr>
</tbody>
</table>

P.1.2.5. Design vertical bearing power under the medium and short-term load

Only the load bearing wooden elements of one side were evaluated in the calculations of the design vertical bearing power of the truss lintel. The load of roofing and floor elements asked be transferred to the walls through additional elements (beams, joists). The bearing capacity of those
elements must be verified in separate calculations. The required length of support must be calculated in the lintel support area.

The design vertical bearing power under the medium and short-term load is presented in Table P.1.2.4.

P.1.2.5. Design vertical load-bearing capacity (kN/m) under medium and short-term loads

<table>
<thead>
<tr>
<th>Load duration</th>
<th>Design vertical load-bearing capacity (kN/m), when the load duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>3.95</td>
</tr>
<tr>
<td>Short-term</td>
<td>4.45</td>
</tr>
</tbody>
</table>

P.1.3. Thermal characteristics

P.3.1. Thermal insulation layer of straw

The main thermal insulation material these panels – pressed layer of straw. Thermal resistance of this layer and the thermal conductivity are determined by measuring samples according to LST EN 12667 and thick samples – according to LST EN 12939.

The declared values of the thermal conductivity and thermal diffusivity coefficients are determined under the following conditions:
- average temperature – 100 °C;
- samples are conditioned by keeping them at least for 6 h in the temperature of (23±2) °C, and in (50±5)% relative humidity of air;
- the measured values are expressed in three significant digits;
- thermal resistance R_D and the declared thermal conductivity coefficient λ_D is the limit values which represent at least 90% of production at 90% confidence level;
- value of the thermal conductivity coefficient λ_90/90 is rounded with the accuracy of 0.001 W/(m·K) to the higher side and is shown as λ_D every 0.001 W/(m·K);
- the declared value of thermal resistance R_D is calculated by the nominal thickness d_N and the corresponding heat transfer coefficient value λ_90/90;
- thermal resistance value of R_90/90, where it is calculated from the nominal thickness d_N and the corresponding heat transfer coefficient value λ_90/90, is rounded with the accuracy of 0.05 (m²·K)/W to the smaller side, and presented as R_D every 0.05 (m²·K)/W.

The declared values are calculated from at least ten test results of the thermal resistance or thermal conductivity.

Thermal properties of the straw insulating layer are presented in Table P.1.2.1.

P.1.3.1. Thermal properties of the straw insulating layer

<table>
<thead>
<tr>
<th>Technical parameters of the thermal insulation layer of straw</th>
<th>λ_D [W/(m·K)]</th>
<th>d_N [mm]</th>
<th>R_D [(m²·K)/W]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density: 98 ÷ 127 kg/m³</td>
<td>0.060</td>
<td>400</td>
<td>6.65</td>
</tr>
<tr>
<td>Humidity: 12%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water vapour diffusion resistance factor μ: 1.4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P.1.3.2. Thermal characteristics of the panel

Tests and calculations were performed under the following conditions:
- fibre boards \(\lambda_{ds} = 0.049 \text{ W/(m} \cdot \text{K)}; \)
- clay plaster \(\lambda_{ds} = 0.0521 \text{ W/(m} \cdot \text{K)}; \)

Thermal characteristics of the panel is presented in Table P.1.2.3.

Technical parameters of the panel

<table>
<thead>
<tr>
<th>Layers</th>
<th>(U_{pl}) [W/(m(^2)K)]</th>
<th>(R_{pl}) [(m(^2)K)/W]</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 mm clay plaster layer, (\rho = 1600 \text{ kg/m}^3), (\lambda_{ds} = 0.521 \text{ W/m}^2\text{K})</td>
<td>0.123</td>
<td>8.1</td>
</tr>
<tr>
<td>400 mm layer of straw, (\rho = 98 - 127 \text{ kg/m}^3), (\lambda_D = 0.060 \text{ W/m}^2\text{K})</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 mm wood fibreboard, (\rho = 270 \text{ kg/m}^3), (\lambda_D = 0.049 \text{ W/m}^2\text{K})</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P.1.4. Class of reaction-to-fire performance

Flammability class was found by testing the panel test pieces in accordance with LST EN ISO 11925-2, LST EN 13823 and the classification in accordance with LST EN 13501-1. Tests were carried out on the external finishing layer.

Panel flammability classification results are shown in Table P.1.6.1.

Panel flammability classification results

<table>
<thead>
<tr>
<th>Panel configuration</th>
<th>Class of reaction-to-fire performance</th>
<th>Extended application range</th>
</tr>
</thead>
</table>
| *B-s1,d0* | This classification is applied for the specified configuration and can be extended to these product parameters:
- compressed straw thickness \(\geq 160 \text{ mm} \);
- any unpainted mineral decorative plasters, with the thickness of \(\geq 2 \text{ mm} \) |

<table>
<thead>
<tr>
<th>Configuration 1:</th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| wood frame (timber without protective coating, moisture content 8%);
thermal insulation compressed straw layer (density \(\approx 100 \text{ kg/m}^3 \), thickness 160 mm, humidity 12%);
fibreboard (density 270 kg/m\(^3\), thickness 60 mm);
external layer (exposed to flame):
reinforcement lattice (165 g/m\(^2\))
Baumit open KlebeSpachtel White reinforcement – adhesive mixture (thickness 4.5±5.0 mm, area mass 5.8±6.5 kg/m\(^2\))
Baumit UniPrimer primer (area weight 0.3 kg/m\(^2\))
Baumit NanoporTop decorative plaster (thickness 2 mm, area weight 3.2 kg/m\(^2\)) | B-s1,d0 | |

<table>
<thead>
<tr>
<th>Configuration 2:</th>
<th></th>
<th></th>
</tr>
</thead>
</table>
| wood frame (timber without protective coating, moisture content 8%);
hardpanel strips every 20 cm (density 250 kg/m\(^3\), thickness 5 mm); | B-s1,d0 | |
- thermal insulation compressed straw layer (density \(\approx 100\,\text{kg/m}^3\), thickness 170 mm, humidity 12%);
- external (layer 0 exposed to flame:
 - clay plaster “Brown clay”, 3 layers (thickness 30 mm, density 1600 kg/m\(^3\), area mass 48 kg/m\(^2\), reed fluff 0.05 %;reinforcing mesh of 165 g/m\(^2\) is placed between the second and third layer)
 - decorative clay plaster “White clay” (thickness 2 mm, density 1600 kg/m\(^3\), area mass 3.2 kg/m\(^2\), cellulose 0.025%)

<table>
<thead>
<tr>
<th>Panel configuration</th>
<th>Airborne sound insulation indicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration:</td>
<td></td>
</tr>
<tr>
<td>fibreboard (density 270 kg/m(^3), thickness 60 mm);</td>
<td></td>
</tr>
<tr>
<td>timber frame;</td>
<td></td>
</tr>
<tr>
<td>thermal insulation layer of compressed straw (density 98 (+ 127,\text{kg/m}^3), thickness 400 mm);</td>
<td></td>
</tr>
<tr>
<td>inner layer – clay plaster, thickness 30 mm, density 1600 kg/m(^3);</td>
<td>RW (C;C10;C100:5000) = 54 (-1;-3;0)</td>
</tr>
</tbody>
</table>

P.1.5. Airborne sound insulation indicator

Airborne sound insulation indicator was determined according to LST EN ISO 10140-1, LST EN ISO 10140-2, LST EN ISO 10140-4, LST EN ISO 10140-5 and LST EN ISO 717-1.

Airborne sound insulation value of the panel is presented in Table P.1.2.4.

P.1.5.1. Airborne sound insulation value of the panel

<table>
<thead>
<tr>
<th>Sample storage conditions</th>
<th>Resistance to biological impacts (points according to LST EN ISO 846)</th>
</tr>
</thead>
<tbody>
<tr>
<td>28 days at ambient temperature of (23±2) °C and relative air humidity of 50 %</td>
<td>0 (no visible fungal growth through a microscope)</td>
</tr>
<tr>
<td>28 days at ambient temperature of (23±2) °C and relative air humidity of 95 %</td>
<td>2 (fungal growth visible with the naked eye covers the up to 25% of the sample surface)</td>
</tr>
</tbody>
</table>

P.1.6. Resistance of the thermal insulating straw layer to biological effects

Test of mould fungi resistance of the straw insulating layer was conducted in accordance with ONORM B 6010 methodology applied to the straw samples. The test determines the mould fungi resistance of the samples by storing them for 28 days at a temperature of (23±2) °C, under 95% relative humidity. At the end of the test the samples were evaluated according to the intensity of the fungi growth on them, using a 5 point scale according to LST EN ISO 846.

Assessment results of the resistance of thermal insulating straw layer to biological effects are shown in Table P.1.6.1.

P.1.6.1. Resistance of the thermal insulating straw layer to biological effects
Annex 2
(normative)

General view of the wooden frames of the product

Fig. P.2.1 Wooden frame of panel T1 (no struts)
Fig. P.2.2 Wooden frame of panel T2 (with struts)

Fig. P.2.3 Wooden frame of truss lintel
Control plan

Products must be accepted after the evaluation of the results of materials, production process, finished goods testing, periodic testing, and the requirements of this technical approval.

P3.1. Control of incoming materials

The incoming materials control plan is presented in Table P3.1.

P3.1. Incoming materials control plan

<table>
<thead>
<tr>
<th>No</th>
<th>Name of the raw material, characteristic</th>
<th>Test/control method</th>
<th>Requirement</th>
<th>Control/testing frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Timber</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Wood strength class</td>
<td>According to the conformity documents of the supplier</td>
<td>C24</td>
<td>Each batch before unloading</td>
</tr>
<tr>
<td>1.2</td>
<td>Wood moisture content</td>
<td>Measurements according to LST EN 13183-2</td>
<td>Not exceeding 20%</td>
<td>Each batch before unloading</td>
</tr>
<tr>
<td>1.3</td>
<td>Wood sectional dimensional accuracy</td>
<td>Measurement</td>
<td>Dimensions (95×45) mm. Accuracy – class 2 according to LST EN 336</td>
<td>1) each batch prior to unloading. 2) before using in the production</td>
</tr>
<tr>
<td>1.4</td>
<td>Wood shape accuracy</td>
<td>Measurements according to LST EN 1310</td>
<td>- spring ≤ 4 mm in 2 m length; - bow ≤ 6 mm in 2 m length; - twist ≤ 6 mm in 25 mm width and in 2 m length; - cup ≤ 2 mm in 100 m of the side;</td>
<td>1) each batch prior to unloading. 2) before using in the production</td>
</tr>
<tr>
<td>1.6</td>
<td>Resistance of wood to the biological effects of environment</td>
<td>According to the conformity documents of the supplier</td>
<td>LST EN 350-2, LST EN 351-1, LST EN 460</td>
<td>Each batch before unloading.</td>
</tr>
<tr>
<td>2</td>
<td>Straw</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td>Humidity</td>
<td>Measuring according to the manufacturer's method</td>
<td>Not exceeding 20%</td>
<td>1) each roll before unloading 2) before using in the production</td>
</tr>
<tr>
<td>2.2</td>
<td>Biocide (pesticide) quantity</td>
<td>According to the supplier’s declaration</td>
<td>Requirements of Directive 98/8/EC for biocidal products</td>
<td>Each batch according to the supplier and place before unloading.</td>
</tr>
<tr>
<td>2.3</td>
<td>Straw structure</td>
<td>Manufacturer's method</td>
<td>technical specification of the manufacturer</td>
<td>Each batch according to the supplier and place before unloading.</td>
</tr>
<tr>
<td>3</td>
<td>Metal fasteners</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Type</td>
<td>According to the conformity documents of the supplier</td>
<td>Type according to working drawings</td>
<td>Each batch before unloading</td>
</tr>
<tr>
<td>3.2</td>
<td>Durability (corrosion resistance)</td>
<td>According to the conformity documents of the supplier</td>
<td>According to the working drawings</td>
<td>Each batch before unloading</td>
</tr>
<tr>
<td>4</td>
<td>Fibreboard</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Type</td>
<td>According to the working drawings</td>
<td>Each batch before</td>
<td></td>
</tr>
</tbody>
</table>
conformity documents of the supplier

4.2 Appearance Visual inspection According to the reference sample Each batch before unloading

4.3 Accuracy of measurements Measurement According to the working drawings Each batch before unloading

5 Plywood

5.1 Type According to the conformity documents of the supplier Each batch before unloading

5.2 Appearance Visual inspection According to the reference sample Each batch before unloading

5.3 Accuracy of measurements Measurement According to the working drawings Each batch before unloading

Notes:
- spring – longitudinal shift of the lumber workpiece, perpendicular to the edge;
- bow – lengthwise shift of the lumber workpiece perpendicular to the sides;
- twist – helical lengthwise twisting of the lumber workpiece sides;
- cup – curvature of the lumber workpiece perpendicular to the width of the side;

P3.2. Manufacturing process control

The manufacturing process control plan is presented in Table P3.2.

P3.2. Manufacturing process control plan

<table>
<thead>
<tr>
<th>No</th>
<th>Name of the raw material, characteristic</th>
<th>Test/control method</th>
<th>Requirement</th>
<th>Control/testing frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Wood blanks preparation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td>Cross-sectional dimensions of timber (if the timber is cut)</td>
<td>Measurement</td>
<td>Class 2 according to LST EN 336</td>
<td>Prior to the use of production</td>
</tr>
<tr>
<td>1.2</td>
<td>Wood shape accuracy</td>
<td>Measurements according to LST EN 1310</td>
<td>- spring* ≤ 4 mm in 2 m length; - bow** ≤ 6 mm in 2 m length; - twist*** ≤ 6 mm in 25 mm width and in 2 m length; - cup**** ≤ 2 mm in 100 m of the side</td>
<td>Prior to the use of production</td>
</tr>
<tr>
<td>1.3</td>
<td>Wane</td>
<td>Visual</td>
<td>Impermissible</td>
<td>Prior to the use of production</td>
</tr>
<tr>
<td>1.4</td>
<td>Wood impregnation (if necessary)</td>
<td>Measurement</td>
<td>According to the technological documentation: - material quantity; - coverage thickness; - impregnation depth</td>
<td>Each batch</td>
</tr>
</tbody>
</table>

2 Wood frame assembly

2.1 Selection of fasteners Visually, measurement According to the working drawings requirements Each fastener type

2.2 Accuracy of assembly Measurement According to the working drawings requirements Each frame

3 Pressing of the thermal insulation layer of straw

3.1 Density Weighing 100 ÷ 130 kg/m³ In case of doubt

3.2 Planes Measurement ± 2 mm in 2 m length In case of doubt

4 Clay plaster (prescription) manufacturing

4.1 Dispensing accuracy Weighing ± 2% Each mixture
P3.3. Finished product control

The finished production control records are presented in Table P3.3.

Table P3.3. Finished production control records

<table>
<thead>
<tr>
<th>No</th>
<th>Control name</th>
<th>Test/control method</th>
<th>Control frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Control of shape and dimensions</td>
<td>Measurement</td>
<td>Each panel</td>
</tr>
<tr>
<td>2</td>
<td>Panel weight</td>
<td>Weighing</td>
<td>Each panel</td>
</tr>
<tr>
<td>3</td>
<td>Moisture content of the thermal insulation layer of straw</td>
<td>Measurement</td>
<td>Each panel</td>
</tr>
<tr>
<td>4</td>
<td>Marking</td>
<td>Visual control</td>
<td>Each product</td>
</tr>
</tbody>
</table>